近日,華中農(nóng)業(yè)大學(xué)水產(chǎn)學(xué)院研究團(tuán)隊(duì)和美國賓夕法尼亞大學(xué)J. Oriol Sunyer教授團(tuán)隊(duì)合作研究成果以“Teleost swim bladder, an ancient air-filled organ that elicits mucosal immune responses”為題在Cell Discovery發(fā)表。研究首次發(fā)現(xiàn)低等脊椎動(dòng)物魚類的鰾具有重要黏膜免疫功能,揭示魚類黏膜免疫球蛋白抗病毒感染的適應(yīng)性免疫應(yīng)答機(jī)制。
脊椎動(dòng)物氣體填充器官最早出現(xiàn)于4億年前輻鰭魚類中,被稱為“原肺”。在泥盆紀(jì)時(shí)期,早期魚類由水中向陸地過渡。為了適應(yīng)外界環(huán)境,早期魚類“原肺”逐漸演化形成四足動(dòng)物的肺,行使呼吸作用。然而,生存在水中的大部分硬骨魚類則演化出鰾,主要調(diào)節(jié)身體在水中的浮沉。繼“進(jìn)化論之父”達(dá)爾文提出鰾和肺是同源器官的假說之后,許多科學(xué)家陸續(xù)從組織形態(tài)、器官發(fā)育和分子生物學(xué)等方面找到很多相關(guān)證據(jù)支持這一觀點(diǎn)。
哺乳動(dòng)物肺與外界相通,肺黏膜在抵御外界病原侵染時(shí)發(fā)揮重要的作用,形成一道免疫防線,IgA作為體液免疫應(yīng)答效應(yīng)分子在其中發(fā)揮重要功能。然而,目前研究發(fā)現(xiàn)魚鰾除了能控制身體浮沉,還具有呼吸、發(fā)聲和聽覺等輔助功能。那么,魚鰾與四足動(dòng)物肺同源,鰾是否具有免疫功能呢?
為了回答這一科學(xué)問題,研究團(tuán)隊(duì)從組織結(jié)構(gòu)、淋巴細(xì)胞組成和免疫應(yīng)答等方面對魚鰾進(jìn)行研究,發(fā)現(xiàn)魚鰾具有肺類似的I型黏膜上皮,表面覆蓋一層黏液,存在彌散性黏膜相關(guān)淋巴組織(MALT)。通過構(gòu)建鰾注射傳染性造血器官壞死病毒(IHNV)感染模型,發(fā)現(xiàn)病毒能夠入侵上皮層,引起組織損傷,并誘導(dǎo)鰾組織產(chǎn)生強(qiáng)烈的先天和適應(yīng)性免疫反應(yīng)。進(jìn)一步研究發(fā)現(xiàn)病毒感染后鰾黏膜中IgT+ B細(xì)胞顯著增殖,并在局部分泌大量病毒特異性IgT,這些IgT由黏膜上皮細(xì)胞分泌的多聚免疫球蛋白受體(pIgR)介導(dǎo)轉(zhuǎn)運(yùn)。跟IgM和IgD相比,黏膜IgT對病毒具有更顯著的中和作用。更重要的是,存活下來的魚鰾黏膜抵御二次病毒入侵。當(dāng)存活魚鰾組織中IgT+ B細(xì)胞被耗竭(depletion)后,二次感染會(huì)導(dǎo)致病毒載量顯著增加,組織病變再次發(fā)生,表明特異性IgT在魚鰾黏膜抗病毒感染中發(fā)揮重要功能。這些結(jié)果首次揭示魚鰾的黏膜免疫功能,表明盡管魚鰾和四足動(dòng)物肺在生物演化過程中分屬兩支,而且生理功能上存在很大差異,但它們擁有類似的黏膜免疫應(yīng)答機(jī)制。
華中農(nóng)業(yè)大學(xué)水產(chǎn)學(xué)院博士后于永耀、博士生黃振宇和董雰,中國科學(xué)院水生生物研究所博士后孔維光為論文共同第一作者,中國科學(xué)院水生生物研究所徐鎮(zhèn)研究員和美國賓夕法尼亞大學(xué)J. Oriol Sunyer教授為論文通訊作者。該研究得到國家重點(diǎn)研發(fā)計(jì)劃、國家自然科學(xué)基金、國家博士后創(chuàng)新人才計(jì)劃等項(xiàng)目的支持。
【英文摘要】
The air-filled organs (AOs) of vertebrates (lungs and swim bladders) have evolved unique functions (air-breathing or buoyancy control in water) to adapt to different environments. Thus far, immune responses to microbes in AOs have been described exclusively in the lungs of tetrapods. Similar to lungs, swim bladders (SB) represent a mucosal surface, a feature that leads us to hypothesize a role for SB in immunity. In support, we demonstrate that secretory IgT (sIgT) is the key SB immunoglobulin (Ig) responding to viral challenge, and the only Ig involved in viral neutralization in that organ. In support of these findings, we found that the viral load of the SB from fish devoid of sIgT was much higher than that of control fish. Interestingly, and similar to the lungs in mammals, the SB represents the mucosal surface in fish with the lowest content of microbiota. Moreover, sIgT is the main Ig class found coating their surface, thus suggesting a key role of this Ig in the homeostasis of the SB bacterial microbiome. In addition to the well-established role of SB in buoyancy control, our findings reveal a previously unrecognized function of teleost SB in adaptive mucosal immune responses upon pathogenic challenge, while revealing a previously unidentified role of sIgT in anti-viral defense. Overall, our findings indicate that despite of the phylogenetic distance and physiological roles of teleost SB and mammalian lungs, they both have evolved analogous mucosal immune responses against microbes which likely originated independently through a process of convergent evolution.
論文鏈接:https://www.nature.com/articles/s41421-022-00393-3