10月5日,華中農(nóng)業(yè)大學(xué)張宏宇教授園藝與城市昆蟲研究團(tuán)隊(duì)在知名期刊PLoS Genetics在線發(fā)表題為“miR-275/305 cluster is essential for maintaining energy metabolic homeostasis by the insulin signaling pathway in Bactrocera dorsalis”的文章,首次在橘小實(shí)蠅中證實(shí)了microRNA(miR-275/305簇)參與能量代謝的穩(wěn)態(tài)調(diào)控,研究成果對(duì)于理解營養(yǎng)調(diào)控昆蟲代謝生理具有重要的科學(xué)意義。
飲食營養(yǎng)作為重要的環(huán)境限制因子,對(duì)昆蟲生長(zhǎng)發(fā)育及繁殖至關(guān)重要。在多數(shù)雙翅目昆蟲中,羽化后的成蟲必須攝入一定的蛋白質(zhì)才能達(dá)到性成熟階段并繁殖后代。此外,生物體需要不斷地調(diào)整各組織器官間的代謝狀況以適應(yīng)營養(yǎng)的波動(dòng),精確控制代謝穩(wěn)態(tài)對(duì)細(xì)胞分化和組織完整性至關(guān)重要,代謝失調(diào)會(huì)導(dǎo)致嚴(yán)重的生理性疾病,如肥胖和胰島素抵抗。然而,昆蟲用來應(yīng)對(duì)不同營養(yǎng)變化來調(diào)整自身代謝的分子機(jī)制,仍然知之甚少。
該研究首先明確了取食酵母對(duì)橘小實(shí)蠅成蟲代謝的影響(甘油三酯、糖原和總糖含量升高)。最新的研究發(fā)現(xiàn),飲食可以重塑miRNA表達(dá)譜,進(jìn)一步通過RNAi干擾miRNA生物合成通路基因發(fā)現(xiàn),干擾AGO1和DCR1同樣能夠影響成蟲的代謝狀態(tài),表明飲食酵母可能通過miRNA影響橘小實(shí)蠅代謝狀態(tài)。通過small RNA高通量測(cè)序,共鑒定19個(gè)差異表達(dá)的miRNAs。其中,進(jìn)化上保守的miR-275/305簇在應(yīng)對(duì)酵母食物刺激時(shí)表現(xiàn)正協(xié)同響應(yīng),并且在橘小實(shí)蠅脂肪體、腸道等脂肪富集組織高表達(dá)。利用CRISPR/Cas9基因編輯技術(shù),敲除miR-275和miR-305顯著降低了甘油三酯和糖原含量,而總糖含量顯著升高,并損害橘小實(shí)蠅飛行能力。
為了進(jìn)一步探究miR-275和miR-305的作用機(jī)制,作者利用兩組學(xué)關(guān)聯(lián)分析,在全基因范圍內(nèi)進(jìn)行靶標(biāo)基因篩選,然后利用顯微注射、雙熒光素酶檢測(cè)、RNA免疫共沉淀及原位雜交等技術(shù),最終證實(shí)了miR-275和miR-305分別作用于SLC2A1和GLIS2的3'UTR區(qū)域結(jié)合以抑制其表達(dá)。功能分析表明,SLC2A1和GLIS2分別參與碳降解和脂質(zhì)代謝過程,通過RNAi干擾靶標(biāo)基因,可以部分拯救由抑制miR-275和miR-305引起的代謝表型。進(jìn)一步研究發(fā)現(xiàn),注射外源胰島素可以顯著促進(jìn)miR-275/305簇轉(zhuǎn)錄,抑制SLC2A1/GLIS2的表達(dá),而干擾胰島素素受體底物IRS則表現(xiàn)出相反的趨勢(shì)。干擾TOR通路同樣能夠影響靶標(biāo)基因的轉(zhuǎn)錄。這些結(jié)果表明,由miR-275/305簇介導(dǎo)的代謝網(wǎng)絡(luò)是受胰島素信號(hào)通路的調(diào)控。
基于上述結(jié)論,作者提出了一個(gè)miR-275/305簇調(diào)節(jié)能量代謝穩(wěn)態(tài)的網(wǎng)絡(luò)模型。攝入飲食酵母后,激活的胰島素信號(hào)通路促進(jìn)miR-275/305簇的轉(zhuǎn)錄,后者與靶基因SLC2A1/GLIS2結(jié)合后抑制其轉(zhuǎn)錄,從而保證正常的代謝生理,TOR通路也能獨(dú)立調(diào)控靶標(biāo)基因而不影響miRNA的轉(zhuǎn)錄。在酵母剝奪條件下,TOR和胰島素信號(hào)通路活性被抑制,miRNA轉(zhuǎn)錄隨之減少,由miRNA介導(dǎo)的抑制作用減弱,表現(xiàn)為增強(qiáng)SLC2A1/GLIS2轉(zhuǎn)錄以維持基本代謝所需能量的供應(yīng)。
華中農(nóng)業(yè)大學(xué)博士研究生謝俊飛為論文第一作者,張宏宇教授和李曉雪教授為共同通訊作者,已畢業(yè)博士生鄭文平、蔡朝輝和研究生陳豪參與部分研究工作。本項(xiàng)研究得到了國家重點(diǎn)研發(fā)計(jì)劃(2019YFD1002100)和國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-26)的支持。
張宏宇教授團(tuán)隊(duì)長(zhǎng)期致力于實(shí)蠅等園藝與城市害蟲災(zāi)變規(guī)律與綠色防控、入侵生物與生物安全研究,取得了一系列研究進(jìn)展,部分成果已在Nature Communications、ISME J、PLoS Pathogens、Cells、Frontiers in Microbiology、Evolutionary Applications、Insect Mol Biol等高水平雜志發(fā)表。
英文摘要:
Increasing evidence indicates that miRNAs play crucial regulatory roles in various physiological processes of insects, including systemic metabolism. However, the molecular mechanisms of how specific miRNAs regulate energy metabolic homeostasis remain largely unknown. In the present study, we found that an evolutionarily conserved miR-275/305 cluster was essential for maintaining energy metabolic homeostasis in response to dietary yeast stimulation in Bactrocera dorsalis. Depletion of miR-275 and miR-305 by the CRISPR/Cas9 system significantly reduced triglyceride and glycogen contents, elevated total sugar levels, and impaired flight capacity. Combined in vivo and in vitro experiments, we demonstrated that miR-275 and miR-305 can bind to the 3'UTR regions of SLC2A1 and GLIS2 to repress their expression, respectively. RNAi-mediated knockdown of these two genes partially rescued metabolic phenotypes caused by inhibiting miR-275 and miR-305. Furthermore, we further illustrated that the miR-275/305 cluster acting as a regulator of the metabolic axis was controlled by the insulin signaling pathway. In conclusion, our work combined genetic and physiological approaches to clarify the molecular mechanism of metabolic homeostasis in response to different dietary stimulations and provided a reference for deciphering the potential targets of physiologically important miRNAs in a non-model organism.
原文鏈接:
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010418