華中農(nóng)業(yè)大學(xué)作物遺傳改良國(guó)家重點(diǎn)實(shí)驗(yàn)室李興旺教授課題組研究成果以“Diurnal RNAPII-tethered chromatin interactions are associated with rhythmic gene expression in rice”為題在Genome Biology發(fā)表。研究繪制了水稻晝夜動(dòng)態(tài)變化的高分辨率三維基因組圖譜,系統(tǒng)闡釋了晝夜動(dòng)態(tài)變化的三維基因組結(jié)構(gòu)對(duì)節(jié)律基因轉(zhuǎn)錄調(diào)控的影響。
課題組前期系統(tǒng)地解析了水稻等模式植物不同組織的線性表觀基因組和三維基因組結(jié)構(gòu)這些相對(duì)“靜態(tài)”的核內(nèi)染色質(zhì)組織形式。事實(shí)上,真核生物的三維基因組結(jié)構(gòu)隨時(shí)序(如晝夜節(jié)律 、 發(fā)育階段等)發(fā)生動(dòng)態(tài)變化,影響基因表達(dá)的種類和強(qiáng)度。因此,需要選擇一個(gè)理想的系統(tǒng),來(lái)研究三維基因組結(jié)構(gòu)動(dòng)態(tài)變化規(guī)律及其功能。地球自轉(zhuǎn)產(chǎn)生的晝夜更替引起了光照和溫度等環(huán)境的周期性變化,高等生物也演化出了與之相適應(yīng)的內(nèi)源性晝夜節(jié)律生物鐘。生物鐘產(chǎn)生以大約24 小時(shí)為周期的振蕩變化,參與調(diào)控水稻中超過1/3活躍表達(dá)的基因,是生長(zhǎng)發(fā)育、新陳代謝和激素信號(hào)傳導(dǎo)等生命活動(dòng)過程中重要的內(nèi)源性基因表達(dá)調(diào)控系統(tǒng)。因此,水稻的節(jié)律鐘生物學(xué)不僅本身是一個(gè)重要的研究領(lǐng)域,同時(shí)也是研究三維基因組結(jié)構(gòu)動(dòng)態(tài)變化與基因表達(dá)調(diào)控的理想模型。
ChIA–PET analysis defines the RNAPII interactome in rice during a circadian cycle
RNA聚合酶II(RNAPII)是真核生物基因轉(zhuǎn)錄的核心亞基,關(guān)鍵轉(zhuǎn)錄元件。在本研究中,首先繪制了RNAPII在一天中不同時(shí)間點(diǎn)的順反組圖譜,顯示35%的RNAPII占位在一天中呈現(xiàn)節(jié)律變化,再結(jié)合節(jié)律轉(zhuǎn)錄組數(shù)據(jù),發(fā)現(xiàn)RNAPII信號(hào)水平與節(jié)律基因的表達(dá)水平呈現(xiàn)顯著正相關(guān)性,且RNAPII招募過程比mRNA積累提前2小時(shí)。隨后,利用改進(jìn)的Long-read ChIA-PET技術(shù),構(gòu)建了RNAPII介導(dǎo)的晝夜染色質(zhì)交互圖譜,系統(tǒng)分析了在不同的三維結(jié)構(gòu)尺度下對(duì)節(jié)律基因轉(zhuǎn)錄的影響。
研究結(jié)果顯示,在染色質(zhì)環(huán)水平,RNAPII在早晚分別介導(dǎo)了20,667和21,001個(gè)染色質(zhì)遠(yuǎn)程互作,其中32,697(91%)個(gè)遠(yuǎn)程交互是早晚特異的。且一天中相同或鄰近相位的節(jié)律基因傾向于在空間上聚集在一起,進(jìn)行協(xié)同表達(dá)。從同一個(gè)基因位點(diǎn)發(fā)出的染色質(zhì)環(huán)形成染色質(zhì)空間交互簇(CSC),研究發(fā)現(xiàn)節(jié)律表達(dá)基因傾向于富集在早上特異的CSC,而非節(jié)律基因傾向于富集在晚上特異的CSC。晝夜染色質(zhì)交互網(wǎng)絡(luò)分析表明,核心節(jié)律鐘基因在早上均分布在RNAPII介導(dǎo)的染色質(zhì)連接網(wǎng)絡(luò)中,而在晚上則是分散開來(lái)、零星散布在較小的染色質(zhì)連接網(wǎng)絡(luò)中,這表明核心節(jié)律鐘基因在早上彼此空間上相互接近進(jìn)行協(xié)同轉(zhuǎn)錄,而在晚上則是位于離散的“轉(zhuǎn)錄工廠” 中。這些晝夜動(dòng)態(tài)變化的水稻高分辨率三維基因組學(xué)研究和對(duì)節(jié)律基因的互作調(diào)控信息,有助于我們深入理解水稻不同空間尺度上DNA 順式調(diào)控元件之間相互作用的節(jié)律變化規(guī)律,進(jìn)而闡明其調(diào)控基因節(jié)律表達(dá)和重要農(nóng)藝性狀的機(jī)理,為水稻遺傳改良和其他經(jīng)濟(jì)作物的研究提供重要的指導(dǎo)意義和科學(xué)價(jià)值。
華中農(nóng)業(yè)大學(xué)博士后鄧?yán)筒┦垦芯可甙装诪檎撐墓餐谝蛔髡?。生命科學(xué)技術(shù)學(xué)院李興旺教授為通訊作者,信息學(xué)院李國(guó)亮教授參與了課題指導(dǎo)。研究得到了國(guó)家重點(diǎn)研發(fā)計(jì)劃、國(guó)家自然科學(xué)基金,中國(guó)博士后科學(xué)基金、中央高校基本科研專項(xiàng)資金以及作物遺傳改良國(guó)家重點(diǎn)實(shí)驗(yàn)室自主課題等項(xiàng)目和基因組研究與水稻遺傳改良創(chuàng)新團(tuán)隊(duì)的支持。
審核人:李興旺
【英文摘要】
Background: The daily cycling of plant physiological processes is speculated to arise from the coordinated rhythms of gene expression. However, the dynamics of diurnal 3D genome architecture and their potential functions underlying rhythmic gene expression remain unclear.
Results: Here, we reveal the genome-wide rhythmic occupancy of RNA polymerase II (RNAPII), which precedes mRNA accumulation by approximately 2 h. Rhythmic RNAPII binding dynamically correlates with RNAPII-mediated chromatin architecture remodeling at the genomic level of chromatin interactions, spatial clusters, and chromatin connectivity maps, which are associated with the circadian rhythm of gene expression. Rhythmically expressed genes within the same peak phases of expression are preferentially tethered by RNAPII for coordinated transcription. RNAPII-associated chromatin spatial clusters (CSCs) show high plasticity during the circadian cycle, and rhythmically expressed genes in the morning phase and non-rhythmically expressed genes in the evening phase tend to be enriched in RNAPII-associated CSCs to orchestrate expression. Core circadian clock genes are associated with RNAPII-mediated highly connected chromatin connectivity networks in the morning in contrast to the scattered, sporadic spatial chromatin connectivity in the evening; this indicates that they are transcribed within physical proximity to each other during the AM circadian window and are located in discrete “transcriptional factory” foci in the evening, linking chromatin architecture to coordinated transcription outputs.
Conclusion: Our findings uncover fundamental diurnal genome folding principles in plants and reveal a distinct higher-order chromosome organization that is crucial for coordinating diurnal dynamics of transcriptional regulation.
論文鏈接:https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02594-7