近日,華中農(nóng)業(yè)大學(xué)植物科學(xué)技術(shù)學(xué)院農(nóng)藥毒理學(xué)及有害生物抗藥性團隊的研究進展在線發(fā)表,研究揭示了高溫條件下褐飛虱對殺蟲劑敏感性的變異機制,解析了共生菌調(diào)控宿主解毒代謝的信號通路,為全球變暖背景下害蟲防治及農(nóng)藥的科學(xué)合理使用提供了重要的理論依據(jù)。
高溫及抗生素抑制褐飛虱共生菌介導(dǎo)的解毒代謝
殺蟲劑在保障全球范圍內(nèi)的糧食安全生產(chǎn)中發(fā)揮了重要作用,該研究團隊前期研究發(fā)現(xiàn)新煙堿類殺蟲劑對褐飛虱的毒力呈現(xiàn)出顯著的正溫度效應(yīng)(Pesticide Biochemistry and Physiology, 2019, 156, 80-86)。基于該特性,該研究團隊進一步以溫度響應(yīng)性聚合物修飾的中空介孔二氧化硅納米復(fù)合物為載體材料巧妙設(shè)計制備了溫度響應(yīng)性納米載藥體系,該體系對褐飛虱的毒力與溫度呈顯著正相關(guān),且較傳統(tǒng)劑型具有更長的持效期,可顯著提高殺蟲劑利用率(Chemical Engineering Journal, 2020, 383, 123169)。然而,高溫介導(dǎo)害蟲殺蟲劑敏感性變異的機制仍是未解之謎。
共生菌Wolbachia調(diào)控褐飛虱解毒代謝
研究發(fā)現(xiàn),高溫脅迫可顯著抑制褐飛虱溫度敏感性共生菌,進而抑制褐飛虱解毒代謝酶基因的表達,破壞共生菌介導(dǎo)宿主的解毒代謝。分子機制上的研究進一步揭示了溫度敏感性共生菌可通過宿主CncC信號通路對褐飛虱解毒代謝酶基因表達的調(diào)控。該研究明確了溫度敏感性共生菌沃爾巴克氏體(Wolbachia)在調(diào)控褐飛虱解毒代謝中的重要作用,闡明了高溫導(dǎo)致褐飛虱殺蟲劑敏感性變異機制。深入了解昆蟲共生菌調(diào)控宿主殺蟲劑解毒代謝的機制有助于建立殺蟲劑抗性協(xié)同進化的模型,推動害蟲抗藥性高效管理策略的制定,并為“靶菌治蟲”策略的實施奠定了重要基礎(chǔ)。
研究成果以“Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature”為題在The ISME Journal發(fā)表。植物科學(xué)技術(shù)學(xué)院農(nóng)藥學(xué)專業(yè)博士研究生張云驊為論文第一作者,萬虎副教授和美國弗羅里達大學(xué)的Adam C. N. Wong助理教授為論文的共同通訊作者,李建洪教授參與了項目的指導(dǎo),何順副教授參與了研究,上述研究得到國家自然科學(xué)基金、國家重點研發(fā)計劃、湖北省自然科學(xué)基金、校自主創(chuàng)新基金等項目的資助。
【英文摘要】
The interactions between insects and their bacterial symbionts are shaped by a variety of abiotic factors, including temperature. As global temperatures continue to break high records, a great deal of uncertainty surrounds how agriculturally important insect pests and their symbionts may be affected by elevated temperatures, and its implications for future pest management. In this study, we examine the role of bacterial symbionts in the brown planthopper Nilaparvata lugens response to insecticide (imidacloprid) under different temperature scenarios. Our results reveal that the bacterial symbionts orchestrate host detoxification metabolism via the CncC pathway to promote host insecticide resistance, whereby the symbiont-inducible CncC pathway acts as a signaling conduit between exogenous abiotic stimuli and host metabolism. However, this insect-bacterial partnership function is vulnerable to high temperature, which causes a significant decline in host-bacterial content. In particular, we have identified the temperature-sensitive Wolbachia as a candidate player in N. lugens detoxification metabolism. Wolbachia-dependent insecticide resistance was confirmed through a series of insecticide assays and experiments comparing Wolbachia-free and Wolbachia-infected N. lugens and also Drosophila melanogaster. Together, our research reveals elevated temperatures negatively impact insect-bacterial symbiosis, triggering adverse consequences on host response to insecticide (imidacloprid) and potentially other xenobiotics.
論文鏈接:
https://www.nature.com/articles/s41396-021-01046-1